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Abstract

A magnetic proximity detection system is mounted on a mobile mining machine to prevent 

underground workers from being pinned or struck by machine motion. The system generates 

magnetic fields around the machine to determine safe working distances. The miner-worn 

component measures the magnetic field in order to approximate location. Large masses of steel, 

such as those from mining equipment, can alter the magnetic field distribution. This affects the 

locational accuracy of the system, thus adversely impacting worker safety. To examine this 

problem, U.S. National Institute for Occupational Safety and Health researchers developed a 

method and test system to study the influence of a steel mass on the magnetic field distribution. 

The results show that a steel plate can strengthen the magnetic field perpendicular to the generator 

by up to 40 percent. Furthermore, they show that the degree of the influence on the field 

distribution is a function of distance. The results from this study can be used to further develop 

and improve the performance and reliability of electromagnetic proximity detection systems used 

in underground mining applications.

Introduction

On average, 250 miners are injured every year, and 43 miners were reported to be killed by 

striking or pinning accidents involving continuous mining machines in the United States 

between 1984 and 2015, according to the U.S. Mine Safety and Health Administration 

(MSHA, 2015). Continuous mining machines are large mobile machines used to 

mechanically cut coal in underground mines. These machines weigh approximately 60 t 

(132,000 lb) each. Although modern continuous mining machines can be remotely 

controlled, operators still need to be close to the machine primarily because of the low 

visibility and wide blind spots of the underground working environment.

The MSHA promulgated a final regulation in 2015 that requires the use of proximity 

detection systems on all continuous mining machines except full-face machines. MSHA has 
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approved five such systems to be intrinsically safe for use in underground coal mines: (1) 

Strata Worldwide’s HazardAvert System, (2) Frederick Mining’s Model 200 HazardAvert 

Detection System, (3) Nautilus International’s Coal-Buddy System, (4) Matrix Design 

Group’s M3-1000/Joy Global SmartZone Gen 1 and (5) Matrix Design Group’s 

IntelliZone/Joy Global SmartZone Gen 2.

The first four systems are mounted on continuous mining machines, and continuously 

generate a modulated low-frequency magnetic field, of around 100 kHz or lower, from 

generators covering the extended space around the continuous mining machine. A miner-

worn component worn by personnel working in the vicinity of the continuous mining 

machine detects the magnetic flux density, B. With B and a known magnetic field 

distribution model, the proximity detection system can estimate the location of personnel 

relative to the machine (Li, Carr and Jobes, 2012). When a miner is detected at an unsafe 

distance relative to the continuous mining machine, the system generates a warning signal 

and disables the machine before it makes contact with the person wearing the miner-worn 

component. The fifth system uses a reverse technology with the miner-worn device 

generating the magnetic field and the magnetic sensors on the continuous mining machine 

detecting the magnetic flux density.

All proximity detection systems in use rely on a magnetic flux density distribution model to 

determine proximity between miner and machine. The model provides a relationship 

between distances from the generator and a magnetic flux density measurement. The 

model’s accuracy for a given field is thus essential to determine the system’s accuracy.

Research on proximity detection

Research on proximity detection for underground mining machines started in mid-2000, 

when U.S. National Institute for Occupational Safety and Health (NIOSH) researchers 

developed and tested prototypes of low-frequency magnetic proximity detection systems for 

continuous mining machines (Schiffbauer, 2002; Ruff, 2010). Several companies then 

developed commercialized products. To improve the accuracy and performance of proximity 

detection systems, other NIOSH researchers recently developed an intelligent proximity 

detection system, or iPD (Jobes and Carr, 2010), which uses a more accurate magnetic flux 

density distribution model called the shell-based magnetic flux density model, and a 

triangulation technique to more accurately determine miner locations around a continuous 

mining machine.

Shell-based magnetic flux density distribution model

A shell is defined as a collection of all of the points around the generator that have the equal 

magnetic flux density. These points collectively form an enclosure appearing as a shell. A 

spatial shell-based magnetic flux density distribution model for a field in a medium with a 

uniform permeability is graphically illustrated in Fig. 1, with the generator in the center (Li, 

Carr and Jobes, 2012). In this three-dimensional model, each shell has a geometrically 

symmetrical shape that is dependent on the distance away from the generator. The graph was 

created with measurements from the field generated from the generator, which consists of a 

coil of 136 turns on a ferrite core measuring 2.54 × 2.54 × 30.48 cm (1 × 1 × 12 in.). The 

Li et al. Page 2

Min Eng. Author manuscript; available in PMC 2018 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model also defines the relationship of a distance between any point in a given shell and the 

center of the generator. The distance changes with location of a point in a shell.

The magnetic field distribution model can also be expressed in a two-dimensional form (Li, 

Carr and Jobes, 2012). Because the two-dimensional form shares the same model parameters 

and can adequately support the analysis in this study, it will be used as an analytical tool in 

this study.

The generator produces a magnetic B-field around it as an electric current flows through it 

(Fig 2). The solid curve shows the model of a magnetic shell. In a uniform-permeability 

medium, the closer to the generator, the stronger the field or the greater the B value is and 

the smaller the shell is. Because the model defines the relationship between the size and 

shape of a shell and the magnetic flux density, B, it was used in past research to determine 

the location of a miner in a multigenerator system through trilateration and other localization 

technologies. Using the magnetic flux densities for the fields generated by two or more 

generators mounted at different places on a machine and measured by a miner-worn 

component worn by a miner, the system can generate the models of the two or more 

corresponding shells. The intersection point of these shells is the estimate of the location of 

the miner-worn component (Li, Carr and Jobes, 2012; Li, Jobes and Carr, 2013; Carr, Jobes 

and Li, 2010).

A shell is obtained from the sum of two variable components: (1) a circle of radius r and (2) 

an offset a (Fig. 2). The r determines the basic size of the shell, while the a, which can be 

either positive or negative, modifies the shell from the circle. The NIOSH-developed model 

shows how the values of r and a change with changing values of B as well as with the 

angular position around the generator. This variation is described by a set of four constant 

model parameters: cr, dr, ca and da. The cr and dr determine a variation for r, and the ca and 

da for a. Importantly, the NIOSH researchers found that a magnetic field possesses its own 

unique set of these model parameters, and any change of them indicates a field distribution 

change (Li, Carr and Jobes, 2012; Li et al., 2013). This suggests that a difference of two 

magnetic fields can be identified by comparing their corresponding model parameters.

The shell-based model has found an application in determining the influence of an object on 

the magnetic field distribution. Such an influence can be identified and quantitatively 

analyzed through a comparison of the field model constant parameters, cr s, dr s, ca s and da 

s between the magnetic models generated from measurements with and without the presence 

of the object. NIOSH researchers developed a methodology and an experimental system 

based on this principle to systematically measure the influence of in situ massive coal and 

rock strata in a coal mine on the magnetic field distribution of the system. The results 

showed that the parameters in the model, obtained with the presence of coal and rock, 

demonstrated small variations from the corresponding ones from the model, which were 

obtained with the absence of coal and rock. NIOSH researchers thus concluded that the 

massive in situ coal and rock had an insignificant influence on the magnetic field distribution 

of the proximity system. The model without the presence of coal and rock was obtained on 

the ground surface in this experiment (Li et al., 2013). A theoretical explanation for this 
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conclusion is that the coal and rock strata are not composed of magnetic material that is able 

to exert a notable influence on the field distribution.

In the present work, the same principle is used to study the influence of a large steel plate on 

the magnetic field distribution of a laboratory magnetic detection system.

Experimental method

Compared with coal and rock strata, steel is considered to be both a good magnetic and 

conductive material. It can therefore affect the field distribution. To examine the influence of 

steel, two magnetic field distribution models were obtained from two experimental setups, 

one with and one without a large steel plate placed near the generator. These models are 

compared to identify the variation in the field when a steel plate is introduced.

Experimental setup with no steel plate present

A generator, a magnetic probe and a plane polar measurement co-ordinate system were 

positioned on a 1.22 × 2.44 m (4 by 8 ft) wooden table elevated 1 m (3.3 ft) from the ground 

(Fig. 3). The ferrite-cored generator with core dimensions of 25.4 × 190.5 mm (1 × 7.5 in.) 

sat in the origin of the coordinate system along the x-axis. The generator had a matched 

capacitor that made the generator circuit resonate at the system operating frequency of 73.6 

kHz. The IDR-200 magnetic probe provided the reading of magnitude of B field at a given 

point around the space of the generator. The coordinates of a point were determined from the 

plane polar coordinate system. The magnitude of a B reading was determined from the 

vector sum of the three magnetic flux components, x, y and z. The generator was powered 

by an Electronics & Innovation 2010L RF amplifier, and the amplifier was controlled with 

an Agilent 33220A signal generator. A constant current of 3.859 A flowing from the 

amplifier to the generator was maintained throughout the measurement stage.

A total of 495 measurements at different points around the generator were collected. Each 

point included a B reading and corresponding position coordinates. These points belong to 

15 half-shells. Each of the half-shells had 33 different points. Figure 4 shows a sample plot 

of a half-shell generated from one set of 33 measurements with B = 110.9 mG. The shell 

components were r = 352.67 mm and a = 49.54 mm in this shell. With all of the 15 shell 

functions determined from the measurements of these 495 points, the field distribution 

model was then obtained from procedures described in Li, Carr and Jobes (2012), and given 

in Table 1 for the values of the magnetic field model parameters of cr, dr, ca and da.

Experimental setup with steel plate present

The only difference with the previous setup was that an AISI 1020 steel plate measuring 122 

× 244 × 0.635 cm (48 × 96 × 0.25 in.) was placed next to the generator (Fig. 5). The 

electrical resistivity of the steel was approximately 1.0 × 10−7 Ω·m, compared with 200 to 

2,000 Ω·m for coal, and the relative magnetic permeability was about 150, compared with 1 

for air (National Physical Laboratory at Kaye & Laby, 2017; Field Precision LLC, 2017; 

Johnson, 2003). The plate was placed with one of its large surfaces parallel to the 

longitudinal axis of the generator. The generator was positioned 6 cm (2.4 in.) away from the 

center of the plate’s surface. This was done to represent a gap typically found between a 
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generator of a commercialized proximity detection system and the steel body of a 

continuous mining machine. The polar coordinate system that sat on the wooden table was 

set to be perpendicular to the steel plate.

Similar to the experiment without the steel plate, a total of 495 points forming 15 different 

shells were measured. Each shell had the measurements of 33 points. As an example, a half-

shell obtained in the experiment is shown in Fig. 6 with B = 176.9 mG, r = 330.62 mm and a 
= 60.05 mm. With the 15 shell functions determined, the field distribution model was 

obtained and given in Table 1 for the values of the magnetic field model parameters of cr, dr, 
ca and da.

As shown in Table 1, the values of the model parameters cr, dr, ca and da of the field with the 

steel present are significantly greater than the corresponding ones without the steel present. 

As previously stated, these parameters uniquely determine the distribution of a magnetic 

field, and the comparison of these parameters suggests that the steel plate significantly 

altered the field distribution.

The steel plate causes cr and ca, which are the model parameters used to determine the 

magnitudes of r and a, both of which are in millimeters, to increase by 48.2 and 30.2 

percent, respectively. This suggests that the steel plate greatly strengthens the field in front 

of it. The steel plate also causes the dr and da, which are the model parameters used to 

determine changes of r and a with B, to increase by 42.8 and 9.91 percent, respectively. This 

suggests that the steel plate causes a greater increase in magnitude of both r and a with a 

decrease of B. Figures 7a for r and 7b for a compare the changes in r and a of both fields 

resulting from their corresponding field model parameters. The results suggest that the lower 

B is or the farther the distance from the generator, the greater is the difference between the 

shell with the steel present and the shell without the steel present. This suggests that the 

degree of an actual magnetic field enhancement by the steel plate is a function of distance.

Figure 8a provides a comparison of two front half-shells near the generator at B = 250 mG: 

one with the steel plate absent and the other with it present. Similarly, Fig. 8b gives the two 

other front half-shells obtained with and without the steel plate at B = 10 mG. It is not 

difficult to determine that the degree of the shell enhancements by the steel plate vary with B 
or distance from the generator. The lower a B measurement is, as shown in Fig. 8b, or the 

greater the distance from the generator, the greater the enlargement of the shell by the steel 

plate becomes. This is because of a faster increase of both variables r and a of a shell with a 

decrease of B with the steel plate present.

Influence of steel on generator electrical parameters

Change of a generator impedance with change of distance between the generator and 
steel plate

According to Ampere’s Law, the magnetic field flux density from a generator changes with 

respect to current flowing through it (Griffiths, 1999). To maintain a steady magnetic field, a 

magnetic proximity detection system needs to run with a steady current. An unexpected 

variation of the electrical parameter, especially as it relates to the impedance, can result in a 
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corresponding change of the generator current. A current change will, in turn, cause the 

magnetic flux density to change in the space around the generator, which can potentially 

result in a location measurement error.

The impedance of a generator is primarily determined by its inductance and resistance. For a 

generator using a capacitor to construct a resonant circuit, a change of the inductance of the 

generator can also cause a change in the impedance of the entire generator circuit. This will 

result in a change of the generator current and the magnetic flux density.

To understand the influence of the steel plate on the impedance of the generator used in the 

experiment, an Agilent E4980A LCR meter was used to measure its inductance and 

resistance at the operating frequency of 73.6 kHz (Fig. 9). In this experiment, the plate 

surface and generator were set in parallel, and the generator was moved toward the plate at 

equal distance intervals. The measurements show that the steel plate notably altered both the 

inductance and resistance of the generator within a distance of 200 mm (8 in.).

Figure 10a shows the measured inductance of the generator as a function of distance. The 

inductance clearly declines as the distance decreases. The resistance, on the other hand, 

increases as distance decreases (Fig. 10b).

The generator used a matched capacitor to maintain the generator circuit to resonate at 73.6 

kHz with the absence of the steel plate. The test showed that as a result of the change in 

inductance after the steel plate was introduced with the gap distance of 6 cm (2.4 in.) from 

the generator, the resonant frequency of the generator circuit changed to 75.66 kHz with the 

originally matched capacitance. After the capacitor was replaced with the one with the 

rematched capacitance to bring the resonant frequency back to 73.6 kHz, the real power 

consumption of the system was found to be increased by 10 W with the same supply current. 

This increase was primarily due to the resistance increase of the generator circuit. This 

additional power consumption suggests that electrical power dissipated by the steel of a 

mobile mining machine needs to be taken into account when designing a system amplifier 

for a proximity detection system.

Electrically, the generator and the steel plate can be modeled as a transformer. The generator 

acts as the primary winding of the transformer, and the steel plate as the secondary winding. 

A voltage is induced in the steel plate, which produces the eddy current in the steel body that 

is responsible for turning the electrical energy to heat. The closer the steel plate is to the 

generator, the higher is the induced voltage. As a result, the eddy current will change 

accordingly. The eddy current change causes the corresponding change to the electrical 

energy consumed by the steel plate.

Discussion

The magnetic field distribution model parameters obtained in this study show that the steel 

plate strengthens the magnetic field in front of it. The measurements also show that the steel 

plate alters the impedance of the generator at a close distance between them. These changes 

can be attributed to the intrinsic magnetic and electrical properties of steel. Because of a 

variation of magnetic and electrical properties of steel, the influence of one type of steel on 
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the magnetic field distribution and generator circuit can be different from another. The 

quantifiable influence of a given type of steel on the magnetic distribution and the generator 

circuit can be determined with the experiment and modeling method introduced in this 

paper. The results and conclusions from this investigation can serve as a reference for 

general understanding of the influence of the steel.

The changes of inductance in the generator circuit under the influence of the steel plate 

suggest that to maintain good performance of those proximity detection systems that use a 

capacitor to make the generator circuit resonate with the system operating frequency, 

rematching of capacitance needs to be considered in order for the generator circuit to always 

retain resonance with the system operating frequency. Alternatively, the resonating 

frequency needs to be changed to keep up to the inductance changes of the generator when 

moved close to a steel mass. A poorly tuned generator circuit can result in a reduced 

generator current, a lower magnetic flux density, and a lower system efficiency, resulting in a 

lower performance of a system.

This paper presents the quantitative analysis of the influence of a large steel plate on the 

magnetic field distribution of the laboratory proximity detection system using only one 

setup, with the plane coordinate system positioned perpendicular to the steel plate. There can 

be many other setups, such as one in which the steel plate and the plane coordinate system 

are set at an angle other than 90°. In such cases, the method, data modeling process and 

analysis procedures introduced in this paper can be used to obtain a plane field distribution 

model. The model parameters obtained in this investigation can serve as a baseline for 

understanding magnetic field distribution under the influence of a steel plate.

The method, data modeling process and analysis procedures presented here can also be used 

for the field behind the plate. Our sample measurements showed that the magnetic flux 

densities over the space behind the plate were significantly lower than those in front of the 

plate, suggesting that the steel plate significantly weakened the field behind it. This is 

primarily attributed to the shield effect of the steel. This also suggests that the distribution 

model of the magnetic field behind the plate can be significantly different from the one in 

front of it, and a single symmetrical spatial model given in Fig. 1 can no longer adequately 

describe the fields separated by a steel plate. Further, this study shows that the two-

dimensional model given in Fig. 2 can still hold and be used to model a plane field 

distribution. The difference of the fields separated by the steel plate implies that a more 

accurate field model needs to include at least two submodels: one for the field distribution in 

front of the steel, and the other for that behind the plate.

Conclusions

The paper introduces a method to systematically and quantitatively evaluate the influence of 

a large steel plate on the magnetic field distribution of a laboratory magnetic proximity 

detection system. Test results show the plate can significantly enhance the magnetic field in 

front of the plate and lower the field behind it. Such an uneven magnetic distribution results 

in a field that can no longer be adequately described by a perfectly symmetrical distribution 

model, but requires at least two submodels for each field divided by the plate.
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The investigation also extends to evaluate the influence of the steel plate on the electrical 

impedance of the generator circuit. The results show the inductance and resistance of the 

generator can change notably when a steel plate is close to it. These findings can be used to 

ensure more accurate modeling of the magnetic field distribution and design of a proximity 

detection system generator circuit, resulting in more accurate worker location and improving 

system performance. Better performance of the proximity detection system can make mobile 

mining machines safer to operate.
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Figure 1. 
Graphic presentation of a shell-based magnetic flux density distribution model with a 

generator in the center (generator not pictured).
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Figure 2. 
A modeled two-dimensional magnetic shell is described with (1) a radius for a circle and (2) 

an offset from that radius.
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Figure 3. 
Setup of the generator, magnetic probe and measurement coordinate system with no steel 

present.
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Figure 4. 
Set of 33 measurements and the resulting shell with no steel present and B = 110.9 mG.
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Figure 5. 
Setup with the steel plate placed near the generator.
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Figure 6. 
Set of 33 measurements and the resulting half-shell with the steel plate present for B = 176.9 

mG.

Li et al. Page 14

Min Eng. Author manuscript; available in PMC 2018 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Comparison of magnetic shell variable component (a) r and (b) a for the absence and 

presence of the steel plate with B.
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Figure 8. 
Comparison of the half-shells obtained with and without the steel plate present (a) near the 

generator at B = 250 mG and (b) at a far distance from the generator at B = 10 mG.
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Figure 9. 
Setup for measuring the influence of the steel plate on the electrical parameters of the 

generator.
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Figure 10. 
Relationship between (a) inductance and (b) resistance of the generator circuit and distance 

to the steel plate.
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Table 1

Comparison of the magnetic field distribution model constant parameters with and without the steel plate 

present.

With no steel plate present With steel plate present Change (%)

cr 1,690.4 2,201.0 30.2

dr 0.333 0.366 9.91

ca 138.2 204.87 48.2

da 0.215 0.307 42.8
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